Part Number Hot Search : 
B23N15 TP120 2SC22 AD5011B 210L4 PIC12F PM200 MK105
Product Description
Full Text Search
 

To Download HUF76013D3STNL Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? 200 4 fa i r c h i l d s em i con d uctor c orp o r at i on h u f 760 1 3 p 3 , h u f 7 6 013 d 3s r ev. c huf76013p3, huf76013d3s 20a, 20v, 0.022 ohm, n-channel, logic level power mosfets the huf76013 is an application-specific mosfet optimized for switching when used as the upper switch in synchronous buck applications. the low gate charge and low input capacitance results in lower driver and lower switching losses thereby increasing the overall sys tem e fficiency. symbol packaging features ? 20a, 20v -r ds(on) = 0.022 ?, v gs = 10v -r ds(on) = 0.030 ?, v gs = 5v  pwm optimized for synchronous buck applications fast switching  low gate charge -q g total 14nc (typ)  low capacitance -c iss 624pf (typ) -c rss 71pf (typ) huf76013d3s jedec to-252aa huf76013p3 jedec to-220ab d g s gate source drain (flange) drain (flange) drain source gate ordering information part number package brand huf76013p3 to-220ab 76013p huf76013d3s to-252aa 76013d note: when ordering, use the entire part number. add the suffix t to obtain the huf76013d3s in tape and reel, e.g., huf76013d3st. absolute maximum ratings t c = 25 o c, unless otherwise specified symbol parameter huf76013p3, huf76013d3s units v dss drain to source voltage (note 1) 20 v v dgr drain to gate voltage (r gs = 20k ? ) (note 1) 20 v v gs g a t e t o sour c e v o l t age 20 v i d i d i dm drain current continuous (t c = 25 o c, v gs = 10v) (figure 2) continuous (t c = 100 o c, v gs = 5v) pulsed drain current 20 20 figure 4 a a a p d power dissipation derate above 25 o c 50 0.4 w w/ o c t j , t stg operating and storage temperature -55 to 150 o c t l t pkg maximum temperature for soldering leads at 0.063in (1.6mm) from case for 10s package body for 10s, see techbrief tb334 300 260 o c o c thermal specifications r jc thermal resistance junction to case, to-220, to-252 2.5 o c/w r ja thermal resistance junc tion to ambient to-220 62 o c/w thermal resistance junc tion to ambient to-252 100 o c/w note: 1. t j = 25 o c to 125 o c. caution: stresses above those listed in ?absolute maximum ratings? may cause permanent damage to the device. this is a stress only ratin g and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. d a t a s h eet oc to ber 2004
? 200 4 fa i r c h i l d s em i con d uctor c orp o r at i on h u f 760 1 3 p 3 , h u f 7 6 013 d 3s r ev. c electrical specifications t c = 25 o c, unless otherwise specified parameter symbol test conditions min typ max units off state specifications drain to source breakdown voltage bv dss i d = 250 a, v gs = 0v (figure 11) 20 - - v zero gate voltage drain current i dss v ds = 20v, v gs = 0v - - 1 a v ds = 20v, v gs = 0v, t c = 150 o c - - 250 a gate to source leakage current i g s s v gs = 20 v - - 100 na on state specifications gate to source threshold voltage v gs(th) v gs = v ds , i d = 250 a (figure 10) 1 - 3 v drain to source on resistance r ds(on) i d = 20a, v gs = 10v (figures 8, 9) - 0.018 0.022 ? i d = 20a, v gs = 5v (figure 8) - 0.025 0.030 ? switching specifications (v gs = 5v) turn-on time t on v dd = 10v, i d = 20a v gs = 5v, r gs = 19 ? (figures 14, 18, 19) - - 197 ns turn-on delay time t d(on) -11-ns rise time t r - 120 - ns turn-off delay time t d(off) -19-ns fall time t f -30-ns turn-off time t off - - 72 ns switching specifications (v gs = 10v) turn-on time t on v dd = 10v, i d = 20a v gs = 10v, r gs = 19 ? (figures 15, 18, 19) - - 151 ns turn-on delay time t d(on) -7-ns rise time t r -93-ns turn-off delay time t d(off) -37-ns fall time t f -29-ns turn-off time t off - - 100 ns gate charge specifications total gate charge at 10v q g(tot) v gs = 0v to 10v v dd = 10v, i d = 20a, i g(ref) = 1.0ma (figures 13, 16, 17) - 14.4 17 nc total gate charge at 5v q g(tot) v gs = 0v to 5v - 7.8 9 nc threshold gate charge q g(th) v gs = 0v to 1v - 0.9 1 nc gate to source gate charge q gs -3.5-nc gate to drain ?miller? charge q gd -3.2-nc capacitance specifications input capacitance c iss v ds = 20v, v gs = 0v, f = 1mhz (figure 12) - 624 - pf output capacitance c oss - 444 - pf reverse transfer capacitance c rss -71-pf source to drain diode specifications parameter symbol test conditions min typ max units source to drain diode voltage v sd i sd = 20a - - 1.25 v i sd = 10a - - 1.0 v reverse recovery time t rr i sd = 20a, di sd /dt = 100a/ s--55ns reverse recovered charge q rr i sd = 20a, di sd /dt = 100a/ s--82nc huf76013p3, huf76013d3s
? 200 4 fa i r c h i l d s em i con d uctor c orp o r at i on h u f 760 1 3 p 3 , h u f 7 6 013 d 3s r ev. c typical performance curves figure 1. normalized power dissipation vs case temperature figure 2. maximum cont inuous drain current vs case temperature figure 3. normalized maximum transient thermal impedance figure 4. peak current capab ility t a , ambient temperature ( o c) power dissipation multiplier 0 0 2 5 5 0 7 5 100 15 0 0.2 0.4 0.6 0.8 1.0 1.2 125 0 5 10 15 20 25 25 50 75 100 1 25 15 0 i d , drain current (a) t c , case temperature ( o c) v gs = 10v v gs = 5.0v 0.1 1 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 0.01 2 t, rectangular pulse duration (s) z jc , normalized single pulse notes: duty factor: d = t 1 /t 2 peak t j = p dm x z jc x r jc + t c p dm t 1 t 2 duty cycle - descending order 0.5 0.2 0.1 0.05 0.01 0.02 thermal impedance 10 100 10 -5 1000 10 -4 10 -3 10 -2 10 -1 10 0 10 1 i dm , peak current (a) t, pulse width (s) transconductance may limit current in this region t c = 25 o c i = i 25 150 - t c 125 for temperatures above 25 o c derate peak current as follows: v gs = 10v v gs = 5v huf76013p3, huf76013d3s
? 200 4 fa i r c h i l d s em i con d uctor c orp o r at i on h u f 760 1 3 p 3 , h u f 7 6 013 d 3s r ev. c figure 5. forward bias safe operating area figure 6. transfer characteristics figure 7. saturation characteristics figure 8. drain to source on resistance vs gate voltage and drain current figure 9. normalized drain to source on resistance vs junction temperature figure 10. normalized gate threshold voltage vs junction temperature typical performance curves (continued) 1 10 100 11050 300 100 s 10ms 1ms v ds , drain to source voltage (v) i d , drain current (a) limited by r ds(on) area may be operation in this t j = max rated t c = 25 o c single pulse 0 10 20 30 40 234 5 i d , drain current (a) v gs , gate to source voltage (v) pulse duration = 80 s duty cycle = 0.5% max v dd = 15v t j = 150 o c t j = 25 o c t j = -55 o c 0 10 20 30 40 01234 i d , drain current (a) v ds , drain to source voltage (v) v gs = 3v v gs = 4v pulse duration = 80 s duty cycle = 0.5% max v gs = 3.5v t c = 25 o c v gs = 5v v gs = 10v 10 20 30 40 50 24681 0 i d = 5a v gs , gate to source voltage (v) r ds(on) , drain to source on resistance (m ? ) pulse duration = 80 s duty cycle = 0.5% max t c = 25 o c i d = 20a i d = 10a 0.6 0.8 1.0 1.2 1.4 1.6 -80 -40 0 40 80 120 160 normalized drain to source t j , junction temperature ( o c) on resistance v gs = 10v, i d = 20a pulse duration = 80 s duty cycle = 0.5% max 0.6 0.8 1.0 1.2 -80 -40 0 4 0 80 120 16 0 normalized gate t j , junction temperature ( o c) v gs = v ds , i d = 250 a threshold voltage huf76013p3, huf76013d3s
? 200 4 fa i r c h i l d s em i con d uctor c orp o r at i on h u f 760 1 3 p 3 , h u f 7 6 013 d 3s r ev. c figure 11. normalized drain to source breakdown voltage vs junction temperature figure 12. capacitance vs drain to source voltage note: refer to fairchild a pplication notes an7254 and an7260. figure 13. gate charge waveforms for constant gate current figure 14. switching time vs gate resistance figure 15. switching time vs gate resistance typical performance curves (continued) 0.8 0.9 1.0 1.2 -80 -40 0 40 80 120 16 0 t j , junction temperature ( o c) normalized drain to source i d = 250 a breakdown voltage 1.1 100 1000 0.1 1 10 20 2500 50 c, capacitance (pf) v ds , drain to source voltage (v) v gs = 0v, f = 1mhz c iss = c gs + c gd c oss ? c ds + c gd c rss = c gd 0 2 4 6 8 10 0369 1 5 v gs , gate to source voltage (v) q g , gate charge (nc) v dd = 10v i d = 20a i d = 10a waveforms in descending order: i d = 5a 12 0 30 60 90 120 150 180 0 102030405 0 switching time (ns) r gs , gate to source resistance ( ? ) v gs = 5v, v dd = 10v, i d = 20a t r t f t d(on) t d(off) 0 20 40 60 80 100 0 102030405 0 switching time (ns) r gs , gate to source resistance ( ? ) v gs = 10v, v dd = 10v, i d = 20a t r t d(on) t f t d(off) 120 huf76013p3, huf76013d3s
? 200 4 fa i r c h i l d s em i con d uctor c orp o r at i on h u f 760 1 3 p 3 , h u f 7 6 013 d 3s r ev. c test circuits and waveforms figure 16. gate charge test circuit figure 17. gate charge waveforms figure 18. switching time test circuit figure 19. switching time waveform r l v gs + - v ds v dd dut i g(ref) v dd q g(th) v gs = 1v q g(tot) v gs = 5v q g(tot) v gs = 10 v v ds v gs i g(ref) 0 0 q gs q gd v gs r l r gs dut + - v dd v ds v gs t on t d(on) t r 90% 10% v ds 90% 10% t f t d(off) t off 90% 50% 50% 10% pulse width v gs 0 0 huf76013p3, huf76013d3s
? 200 4 fa i r c h i l d s em i con d uctor c orp o r at i on h u f 760 1 3 p 3 , h u f 7 6 013 d 3s r ev. c pspice electrical model .subckt huf76013p3 2 1 3 ; rev 23march 2000 ca 12 8 6.5e-10 cb 15 14 7.0e-10 cin 6 8 5.6e-10 dbody 7 5 dbodymod dbreak 5 11 dbreakmod dplcap 10 5 dplcapmod ebreak 11 7 17 18 26 eds 14 8 5 8 1 egs 13 8 6 8 1 esg 6 10 6 8 1 evthres 6 21 19 8 1 evtemp 20 6 18 22 1 it 8 17 1 ldrain 2 5 1.00e-9 lgate 1 9 4.9e-9 lsource 3 7 4.9e-9 mmed 16 6 8 8 mmedmod mstro 16 6 8 8 mstromod mweak 16 21 8 8 mweakmod rbreak 17 18 rbreakmod 1 rdrain 50 16 rdrainmod 1e-3 rgate 9 20 3.0 rldrain 2 5 10 rlgate 1 9 49 rlsource 3 7 49 rslc1 5 51 rslcmod 1e-6 rslc2 5 50 1e3 rsource 8 7 rso urcemod 12.5e-3 rvthres 22 8 rvthresmod 1 rvtemp 18 19 rvtempmod 1 s1a 6 12 13 8 s1amod s1b 13 12 13 8 s1bmod s2a 6 15 14 13 s2amod s2b 13 15 14 13 s2bmod vbat 22 19 dc 1 eslc 51 50 value={(v(5,51) /abs(v (5,5 1)))*(pwr(v (5,5 1)/(1e -6*175),2.5))} .model dbodymod d (is = 5.4e-13 rs = 1.15e-2 trs1 = 7.0e-5 trs2 = -1.0e-6 cjo = 12.3e-10 tt = 2.93e-8 m = 0.40) .model dbreakmod d (rs = 3.50e- 1trs1 = 1e- 3trs2 = -6.5e-6) .model dplcapmod d (cjo = 4.6e-1 0is = 1e-3 0n = 10 m = 0.6) .model mmedmod nmos (vto = 2.2 kp = 2.0 is = 1e-30 n = 10 tox = 1 l = 1u w = 1u rg = 3.0) .model mstromod nmos (vto = 2.66 kp = 40 is = 1e-30 n = 10 tox = 1 l = 1u w = 1u lambda=.01) .model mweakmod nmos (vto = 1.90 kp = 0.03 is = 1e- 30 n = 10 tox = 1 l = 1u w = 1u rg = 30 rs = 0.1) .model rbreakmod res (tc1 = 1.0e- 3tc2 = -1.0e-6) .model rdrainmod res (tc1 = 2.1e-2 tc2 = 6.5e-5) .model rslcmod res (tc1 = 3.5e-3 tc2 = 2e-6) .model rsourcemod res (tc1 = 1e-3 tc2 = 1e-6) .model rvthresmod res (tc1 = -1.9e-3 tc2 = -6.0e-6) .model rvtempmod res (tc1 = -1.8e- 3tc2 = 0) .model s1amod vswitch (ron = 1e-5 roff = 0.1 von = -4.5 voff= -1.5) .model s1bmod vswitch (ron = 1e-5 roff = 0.1 von = -1.5 voff= -4.5) .model s2amod vswitch (ron = 1e-5 roff = 0.1 von = -0.5 voff= 0) .model s2bmod vswitch (ron = 1e-5 roff = 0.1 von = 0 voff= -0.5) .ends note: for further discussion of the pspice m odel, consult a new pspice sub-circuit for the power mosfet featuring global temperature options ; ieee power electronics specialist conference records, 1 991, written by william j. hepp and c. frank w heatley. 18 22 + - 6 8 + - 5 51 + - 19 8 + - 17 18 6 8 + - 5 8 + - rbreak rvtemp vbat rvthres it 17 18 19 22 12 13 15 s1a s1b s2a s2b ca cb egs eds 14 8 13 8 14 13 mweak ebreak dbody rsource source 11 7 3 lsource rlsource cin rdrain evthres 16 21 8 mmed mstro drain 2 ldrain rldrain dbreak dplcap eslc rslc1 10 5 51 50 rslc2 1 gate rgate evtemp 9 esg lgate rlgate 20 + - + - + - 6 huf76013p3, huf76013d3s
? 200 4 fa i r c h i l d s em i con d uctor c orp o r at i on h u f 760 1 3 p 3 , h u f 7 6 013 d 3s r ev. c saber electrical model rev 23march2000 template huf76013p3 n2, n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl = 5.4e-13, rs = 1.15e-2, trs1 = 7.0e-5, trs2 = -1e-6, cjo = 12.3e-10, tt = 2. 93e-8, m = 0.40) dp..model dbreakmod = (rs = 3.50e-1, trs1 = 1e-3, trs2 = -6.5e-6) dp..model dplcapmod = (cjo = 4.60e-10, isl = 10e-30,nl=10, m = 0.6) m..model mmedmod = (type=_n, vto = 2.2, kp = 2.0, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.66, kp = 40, lamda=0.01, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.90, kp = 0.03, is = 1e-30, tox = 1, rs=0.1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -4.5, voff = -1.5) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -1.5, voff = -4.5) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.5, voff = 0) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0, voff = -0.5) c.ca n12 n8 = 6.50e-10 c.cb n15 n14 = 7.0e-10 c.cin n6 n8 = 5.60e-10 dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod i.it n8 n17 = 1 l.ldrain n2 n5 = 1.00e-9 l.lgate n1 n9 = 4.9e-9 l.lsource n3 n7 = 4.9e-9 m.mmed n16 n6 n8 n8 = model=mmed mod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mst rongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1 = 1.0e-3, tc2 = -1.00e-6 res.rdrain n50 n16 = 1e-3, tc1 = 2.1e-2, tc2 = 6.5e-5 res.rgate n9 n20 = 3.0 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 49 res.rlsource n3 n7 = 49 res.rslc1 n5 n51= 1e-6, tc1 = 3.5e-3, tc2 = 2.0e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 12.5e-3, tc1 = 1.0e-3, tc2 =1e-6 res.rvtemp n18 n19 = 1, tc1 = -1.8e-3, tc2 = 0 res.rvthres n22 n8 = 1, tc1 = -1.9e-3, tc2 = -6.00e-6 spe.ebreak n11 n7 n17 n18 = 26 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s 1amod sw_vcsp.s1b n 13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n 13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/175))** 2.5)) } } 18 22 + - 6 8 + - 19 8 + - 17 18 6 8 + - 5 8 + - rbreak rvtemp vbat rvthres it 17 18 19 22 12 13 15 s1a s1b s2a s2b ca cb egs eds 14 8 13 8 14 13 mweak ebreak dbody rsource source 11 7 3 lsource rlsource cin rdrain evthres 16 21 8 mmed mstro drain 2 ldrain rldrain dbreak dplcap iscl rslc1 10 5 51 50 rslc2 1 gate rgate evtemp 9 esg lgate rlgate 20 + - + - + - 6 huf76013p3, huf76013d3s
? 200 4 fa i r c h i l d s em i con d uctor c orp o r at i on h u f 760 1 3 p 3 , h u f 7 6 013 d 3s r ev. c spice thermal model rev 23march 2000 huf76013t ctherm1 th 6 1.0e-3 ctherm2 6 5 2.80e-3 ctherm3 5 4 3.00e-3 ctherm4 4 3 3.40e-3 ctherm5 3 2 6.40e-3 ctherm6 2 tl 9.50e-2 rtherm1 th 6 1.85e-2 rtherm2 6 5 4.61e-2 rtherm3 5 4 1.30e-1 rtherm4 4 3 7.29e-1 rtherm5 3 2 1.10 rtherm6 2 tl 1.46e-1 saber thermal model saber thermal model huf76013t template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 1.0e-3 ctherm.ctherm2 6 5 = 2.80e-3 ctherm.ctherm3 5 4 = 3.00e-3 ctherm.ctherm4 4 3 = 3.40e-3 ctherm.ctherm5 3 2 = 6.40e-3 ctherm.ctherm6 2 tl = 9.50e-2 rtherm.rtherm1 th 6 =1.85e-2 rtherm.rtherm2 6 5 = 4.61e-2 rtherm.rtherm3 5 4 = 1.30e-1 rtherm.rtherm4 4 3 = 7.29e-1 rtherm.rtherm5 3 2 = 1.10 rtherm.rtherm6 2 tl = 1.46e-1 } rtherm4 rtherm6 rtherm5 rtherm3 rtherm2 rtherm1 ctherm4 ctherm6 ctherm5 ctherm3 ctherm2 ctherm1 tl 2 3 4 5 6 th junction case huf76013p3, huf76013d3s
disclaimer fairchild semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. fairchild does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. trademarks the following are registered and unregistered trademarks fairchild semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. life support policy fairchild?s products are not authorized for use as critical components in life support devices or systems without the express written approval of fairchild semiconductor corporation. as used herein: 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. product status definitions definition of terms datasheet identification product status definition advance information preliminary no identification needed obsolete this datasheet contains the design specifications for product development. specifications may change in any manner without notice. this datasheet contains preliminary data, and supplementary data will be published at a later date. fairchild semiconductor reserves the right to make changes at any time without notice in order to improve design. this datasheet contains final specifications. fairchild semiconductor reserves the right to make changes at any time without notice in order to improve design. this datasheet contains specifications on a product that has been discontinued by fairchild semiconductor. the datasheet is printed for reference information only. formative or in design first production full production not in production isoplanar? littlefet? microcoupler? microfet? micropak? microwire? msx? msxpro? ocx? ocxpro? optologic ? optoplanar? pacman? pop? fast ? fastr? fps? frfet? globaloptoisolator? gto? hisec? i 2 c? i-lo ? implieddisconnect? rev. i13 acex? activearray? bottomless? coolfet? crossvolt ? dome? ecospark? e 2 cmos? ensigna? fact? fact quiet series? power247? poweredge? powersaver? powertrench ? qfet ? qs? qt optoelectronics? quiet series? rapidconfigure? rapidconnect? serdes? silent switcher ? smart start? spm? stealth? superfet? supersot?-3 supersot?-6 supersot?-8 syncfet? tinylogic ? tinyopto? trutranslation? uhc? ultrafet ? vcx? across the board. around the world.? the power franchise ? programmable active droop?


▲Up To Search▲   

 
Price & Availability of HUF76013D3STNL

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X